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Dans cet article, nous donnons une classification compkte des morphismes de semigroupes non 

factorisables 0 : S+ T, oti S et T sont finis. Certaines propriktks des morphismes de semigroupes 

finis cp : S+ T sont mises en relation avec les classes des morphismes non factorisables dont c est 

le produit 

In this paper, we give a complete classification of non-factorizable semigroup morphisms 

0 : S+ T, where S and T are finite. Certain properties of semigroup morphisms rp : S-+ T are put 

in correspondance with the classes of the non-factorizable morphisms of which cp is the product. 

Introduction 

All the semigroups considered here are finite. In this paper, we give a complete 

classification of non-factorizable semigroup morphisms 8 : S-+ T. 

The motivation for this work will be made explicit in part II [8], in which we shall 

characterize, for each of the classes that we distinguish here, classes of monoids V 

such that there exists an injective relational morphism (division) v, : S< V{ T for 

which B = pn. Here 2 denotes either the semidirect or the 2-sided semidirect product, 

and z denotes the canonical projection of VI T onto T. These results will then be 

extended to larger classes of relational morphisms ti and in particular to aperiodic 

morphisms, LG- and LI-morphisms and regular LG- and LI-morphisms. The results 

of this article and part II were announced in [7]. They are also in [lo]. 

The classification of non-factorizable semigroup morphisms, or maximal proper 

surmorphisms (m.p.s.‘s) was first studied in [5] in which one can find a classifica- 

tion somewhat rougher than the one presented here. 
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The paper is divided as follows: Section 1 reminds the reader of the classical 

results of semigroup theory that will be used, and in particular of facts relative to 

the Schutzenberger group of a g-class, and to the varieties of finite semigroups, 

monoids and categories. In Section 2, the definition and general properties of 

m.p.s.‘s are discussed. Finally, the detailed classification of m.p.s.‘s is described in 

Section 3, where numerous examples are given. 

1. Preliminaries 

We shall review in this section some classical tools for the description of 

semigroups and relational morphisms. See [2] and [9]. Recall that, if S and T are 

semigroups, a relational morphism p : S -+ T is a relation (i.e. a mapping from S into 

2r) such that, for all s and t in S, scp # 0 and (scp)(tp) c (st)cp. v, is injective if, fur- 

ther, SP fl tp#0 implies s= t. In this case, we say that S divides T and we write 

a,:ScT(or S<T). 
We denote by S’ the monoid S U (I} where Z is an identity and by S’ the monoid 

equal to S if S is a monoid, to S’ otherwise. .%,g, &$$ and %, denote the classical 

Green relations. 

1.1. Schdtzenberger group of a g-class 

We recall here a few results concerning the structure of the g-classes of a 

semigroup S. For detailed proofs, see [1,2,4, lo]. 

Let A and B be finite non-empty sets, G be a finite group, and P be a B x A-matrix 

with entries in GU (0). A’(A,B, G,P) denotes the semigroup (A xGx B)U (0) 

defined by (a, g, b)(a’, g’, b’) = (a, gpb,., g’, b’), if &,a, # 0, 0 otherwise. A ‘(A, B, G, P) 
is regular iff each row and each column of P has a non-zero entry; in this case it 

is a O-simple semigroup and A x G x B is a g-class. 

If J is a,$-class of a semigroup S, Let J’=JU (0) be the semigroup defined, for 

all s and t in J, by se t =st if st EJ, 0 otherwise. It is well known that Jo= 

&‘(A, B, G, P) for some A, B, G, P, with P either identically zero or a regular 

matrix. Moreover, the sets A and B can be chosen to be respectively the sets of &?- 

and .%classes of J. In fact, the .%-classes are Rf = {a} x G x B (aeA) and the J& 

classes are L: = A x G x {b} (b E B). The group G is the Schiitzenberger group of J. 

Given any %class H of J, G is isomorphic to the groups of permutations of H in- 

duced, respectively, by the right and left translations by elements of S that preserve 

H. Both these groups are regular transitive permutation groups whose actions com- 

mute. If H is itself a group, then G is isomorphic to H. 
Let then 6 : S-t T be a morphism, .Z be a$-class of S, and J’ be theg-class of T 

containing JB. J”=Ao(A, B, G, P) and .Z”=&‘(A’, B’, G’, P’) for some A, A’, B, 
B’, G, G’, P, P’. Since .C@- (resp. g-) equivalent elements of S have 5?- (resp. g-) 

equivalent images under 8, B induces mappings a : A -+A’ and /I : B+ B’ such that 

RiSc Ra’, and L~I~c L& for all aeA and bEB. Let us note that, if pb,a#O 
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(a E A, b E B), then ,$. Ri c J and hence Lb’p. R,f c J and hence L&e R& C J’, i.e. 
pLfi_#O. Finally, the characterizations of G and G’ as permutation groups over 
arbitrary .X-classes of J and J’ make it easy to check that 13 induces a group mor- 
phism e: G+ G’. 

Since we shall need later a more precise description of the action of 19 on J, we 
now turn to (somewhat painful) technicalities. Let us first choose reference 
elements, denoted by 1, in A and B, and let us denote also by 1 the elements la and 
I,8 in A’ and B’. For each a EA (resp. b E B) there exist U, and iin (resp. ub and t&J 
in S’ such that the left translation by u, (resp. the right translation by ub) is a bijec- 
tion from Rf onto Ri (resp. Lf onto Lf,), and the left translation by ii, (resp. the 
right translation by Ub) is the reciprocal bijection from Ri onto Rf (resp. Lz onto 
Lf). We choose ul, iii, u1 and IJ~ to be equal to 1. In fact, the isomorphism between 
&‘(A, B, G, P) and Jo is given by assigning to (a, g, b) the element u,(ho * g)ub where 
ho is a (arbitrarily) fixed element of the X-class H& = Rf f~ Ls (here, G is identified 
with the permutation group of H& induced by the right translations of S that 
preserve His 1. 

The same is true for the g-class J’ of T and we may choose, similarly, elements 
7 u;,, u,,, I&, uh, in T’ for all Q’E A’, b’E B’, and hi in H& = RTn LT. We identify 

G’ with the permutation group of Ht,, ’ induced by the right translations of T that 
preserve H&. In particular, the group morphism t? is such that gt? (gE G) is the 
(uniquely determined) element of G’ such that (hoa g)O = hh. ge. 

Let then (a, g, b) = u,(ho. g)ub be any element of J. Then 

(4 g, b)o = (u,(h,. ~~~b~~ = 04m6. d)(wq 

and, since (a, g, b)8 E Rza fl LrD, 

Let us denote by db the element of G’ induced by the right translation by (u~~?)u;~, 
and by g, the left permutation of H,, 1 T induced by the left translation by &&,O). 
Then, (a,g, b)B= uA,(g,. h;. g6. d,)uj$. See [l, Chapter 71 for more details. 

1.2. Varieties and V-morphisms 

Recall that an S- (resp. M-, G-) variety is a class of finite semigroups (resp. 
monoids, groups) closed under division and finite direct product. Varieties are 
studied in detail in numerous works, and in particular in [2,4]. We shall list here 
some useful varieties. 

G is the variety of all groups and I the trivial M-variety. 
A is the M-variety of aperiodic (i.e. combinatorial, group-free, Xtrivial) 

monoids. 
R (resp. R’) is the M-variety of B-trivial (resp. g-trivial) monoids. 
J1 is the variety of idempotent commutative monoids. It is generated by 

U,={l,O}. 
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If V is an M-variety, Vs is the S-variety generated by V and LV is the S-variety 

of all semigroups S such that, for any idempotent e of 9, eSe is in V. Note that 

SE LG iff S has only one regular#class: its minimal ideal. Note also that LI is the 

S-variety of semigroups that are in LG and are aperiodic, i.e. LI = LG fl A, 

Let V be a S-variety and r : S-+ T be a relational morphism. t is a V-morphism 
if, for any subsemigroup T’ of T that is in V, T’t-’ is also in V. If V = As, T is said 

to be aperiodic. The following easy results make the determination of aperiodic and 

LG-morphisms easier. For a proof, see [4,6,9]. 

Proposition 1.1. Let T: S-t T be a relational morphism. 
l The following are equivalent: 

(1) t is aperiodic; 
(2) for any idempotent e of T, er-’ EAT; 
(3) the restriction of T to any group of S is injective. 

l The following are equivalent: 
(1) 5 is an LG-morphism; 
(2) for any idempotent e of T, er-’ E LG; 

(3) the restriction of 5 to any copy of U, is injective. C 1 

LG-morphisms, when functional, are sometimes called y(U,)- or g’-morphisms 

[1,5,6,91. 
Note also the following result: 

Proposition 1.2. Let PI : S-t T and f12 : T+ V be surmorphisms, /3 =p, &, and W 
be a S-variety. Then, fi is a W-morphism iff PI and /I2 are W-morphisms. 

Proof. Let us assume first that PI and p2 are W-morphisms and let us consider a 

subsemigroup V’ of V that is in W. Then V’&’ is in W, and hence so is V’p-’ = 
(V’&‘)p;‘: /I is a W-morphism. Conversely, let us assume that /? is a W- 

morphism. If V’ is a subsemigroup of V in W, then V’&’ = (V’p-‘)/I, divides 

V’p-’ and hence is in W: & is a W-morphism. If T’ is a subsemigroup of T that 

is in W, T’P;’ c (T’&)p-‘. Since T’&< T’, T’& is in W and hence so are 

(T’p2)p-’ and T’P,‘: & is also a W-morphism. 0 

2. Maximal proper surmorphisms and O-singular $‘-classes 

A maximal proper surmorphism or m.p.s. [S] is an onto semigroup morphism 

0 : S-+ T that is not an isomorphism and is such that, if 0 = 19~ 02, then one of 8r and 

O2 is an isomorphism. It is clear that any onto morphism B can be written as a pro- 

duct 0 = Or O2 ... ek of m.p.s.‘s. 

M.p.s.‘s have been studied by the first author and this section reviews some of 

the results proved in [5]. In Section 3 we shall extend the results of [5] and classify 

the m.p.s.‘s. 
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All the semigroup morphisms considered in this section are assumed to be onto. 
Examples of m.p.s.‘s are given in Section 3. 

2. I. O-singular $-classes 

The first result deals with arbitrary onto morphisms. 

Proposition 2.1. Let 8: S+ T be an onto morphism, and let J’ be a&lass of T. 
Then J’B-’ = J1 U ‘0. U Jk is a union ofg-classes of S, and if Ji (15 is k) is 5 J- 

minimal among J1, . . . , Jk, then Jie = J’. Furthermore, if J’ is regular, then the in- 
dex i is uniquely determined, and Ji is itself regular. 

Proof. Since sgs’ implies s@s’& J’O-’ = J1 U ... U Jk . Let Ji (1 I is n) be 5 J- 

minimal among J1, . . . , Jk and consider SE Ji and t E J’. Then s@7t and hence 
t = @so)8 for some u and u in SJ. Thus usu E J’B-’ and usu 5 Js so that usu E Ji . So, 
JiO= J’. 

If J’ is regular, let e be an idempotent in J’. Then eB-’ is a subsemigroup of S 
and a subset of J’K’. So, if J is theg-class of S that contains the minimal ideal 
of e&l, J is a regularg-class of S, and one of J,, . . . , Jk. Let now SE J’B-‘. Since 
sege, e= (usu)8 for some u and u in S’. Then J<J USUS~S. Thus J is the unique 
5 J-minimal element of { J1, . . . , Jk} . 0 

Let 8: S-+ T be an m.p.s. Ag-class J of S is O-singular if 8 is one-to-one on the 
set S \ J. 

Proposition 2.2. Let I be an ideal of S, maximal among the ideals of S on which 
8 is one-to-one. If J is a&a-class minimally I J-above I, then J is B-singular. 

Proof. Since IU J is an ideal strictly containing I, 6 is not one-to-one on Z U J. 
Define the equivalence relation - on S by s-s’ iff either s=s’ or s,s’eZU J and 
s8 = s’f3. Since Z U J is an ideal, - is a congruence, and 8 factorizes as follows: 

s/-. 
Since 0 is not one-to-one on IU J, - is not the equality and hence O1 is not an 

isomorphism. Therefore 0, is an isomorphism: sB=s’O iff s-s’. So, whenever 
se =s’B and S,S’C$ J, either S,S’E Z, on which 0 is one-to-one, or S,S’E S \ (Z U J) 
where - is equality. Thus 0 is one-to-one on S \ J. 0 

We can deduce from Proposition 2.2 the existence of &singular&&classes. 

Corollary 2.3. S contains a O-singularg-class. 
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Proof. Since B is not one-to-one, an ideal IO of S, maximal among the ideals on 

which B is one-to-one, exists (recall that 0 is an ideal) and is a strict subset of S. Fur- 

ther, ideals are union of#classes, so that there exist&?-classes entirely in S \ I,. So 

we can use Proposition 2.2. 0 

The existence of d-singular $-classes implies the following property. 

Proposition 2.4. Let Z be an ideal of S on which 8 is not one-to-one. Then B is one- 
to-one on S \ Z and (S \ Z)6’ Cl 18 = 0. 

Proof. Let J be a &singular$-class. Since 8 is not one-to-one on Z, JC Z and hence 

8 is one-to-one on S \ Z c S \ J. Let then Z, = {s E I) J% J s}: ZO is an ideal where 8 is 

one-to-one. Let - be defined on S by s-s’ iff either s = s’, or S,S’E I, U J and 

se = s’e. As in the proof of Proposition 2.2, - is a congruence and se = s’8 iff s-s’. 

It is a consequence of the definition of - that classes of elements of I,, U J and of 

S \ (I, U J) are disjoint. Thus B separates Ze U J from S \ (I,, U J). 0 

Let us finally note the following. We denote by S’ the reverse semigroup of S: 

S’={S’I~ES} and s’ . t’= (ts)‘. If 8: S-r T is a relational morphism, the reverse 
morphism 8’:S’+T’ is defined by s’fY={t’I tEse> (sES). B is an m.p.s. iff 8’ is 

one, and J, ,$‘-class of S, is e-singular iff J’ is (Y-singular. 

2.2. Properties of m.p.s. ‘s 

Let .X be one of the Green relations &7, .%, 9 or 3’, and let B : S-t T be an onto 

morphism. We say that B is a *morphism if sf333’8 implies sXs’. We say that 8 

is injective on %-classes (or a y(X)-morphism) if se =s’6’ and SXS’ implies s =s’ 

(S,S’ES). 

One can check [lo] that %morphisms are ,$-morphisms, that $-morphisms are 

LG-morphisms, and that morphisms that are injective on &?-classes are aperiodic. 

Let 8: S-t T be an m.p.s. A main result of [5] is the following: 

Proposition 2.5 [5]. 0 is either injective on %Wasses, or is a X-morphism, and 8 
cannot be both. 

Proof. It is clear that an Xmorphism that is injective on X-classes is one-to-one, 

and hence is not an mp.s. 

Let us suppose that t? is not injective on &?-classes, and let us define - on S by 

s-s’ifse=s’Bands%Y. Then - is not trivial. Let J be a &singular&?-class: 8 being 

one-to-one on S \ J, - is the equality on S \ J. 
Moreover, - is a congruence. Let indeed s-s’ and u, u E S’. If s or s’ is in S \ J, 

then s and s’ are in S \ J since ~33’. Thus s=s’ and usu = Z.&U. If S,S’E J, then 
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se = s’B and (uso)13 = (us’u)~. If one of USD and us’u, say usu, is in J, then, by the 

classical properties of Green relations s*’ implies uso&%s’u. So usu E J iff us’u E J, 

in which case usv&%s’u: usu - US’D. Finally, if both usu and us’u are out of J, 

usu = US’U since (f.4su)e = (24du)e. 
But 8 factorizes as 

B 
S-T 

S/- 

and 8i is not an isomorphism. So e2 is one-to-one and sf9 =s’B iff s-s’. This means 

that s8 = s’B implies s%s’: 6 is a Xmorphism. 0 

We now prove that S contains at most two &singular &?-classes. 

Proposition 2.6. Let 6 be an m.p.s. 
(1) The number of O-singular $-classes is 1 or 2. 

(2) If 8 is a$-morphism, S contains exactly one 8-singular-$-class J, JO is a&?- 
class in T and JtW’ = J. 

(3) If O is not a&?-morphism, there is exactly one$-class J’ of T such that J’B-’ 
is not a&?-class. Then J’O-’ is the union of two$-classes, J’B-’ = JU Q, of which 
one at least is O-singular. Further, any 8-singular&jr-class is either J or Q. 

Proof. (1) is a consequence of (2) and (3). 

(2) Let 6 be a $-morphism and assume that J1 and J2 are distinct e-singular $7- 

classes. Then t!9 is one-to-one on S \ (J1 U J2), J1( c S\ J2) and J2( c S \ 5,). 
Moreover, since t9 is a$-morphism, J18, J@ and (S \ (J1 U Jz))e are pairwise dis- 

joint, and hence 8 is one-to-one: this is a contradiction. 

(3) If 6 is not a $-morphism, there exists a ,$-class J’ of T such that J’K’ = 
J, U ... U Jkr kz2. Let J be IJ-minimal in {J1, . . . . Jk) and Q be I,-minimal in 

{JIU*..UJk}\{J}. LetalsoI={sESIsIJJorsIJQ}.Iisanidealcontaining 

J U Q and hence, after Proposition 2.1, 8 is not one-to-one on I. Then, by Proposi- 

tion 2.4, Ze fl (S \I)8 = 0. So, if kr 3, for any Jj that is different from J and Q, 

Ji c S \ I and hence Ji B (7 18 = 0. But Jj 8 c_ J’ = (J U Q)e c I& we have a contradic- 

tion and thus J’K’ = JU Q. 

Since 6 is not one-to-one on J U Q, no otherg-class than J or Q can be e-singular. 

This also proves the uniqueness of J’. 0 

3. Classification of mp.s.3 

In this section, we describe the four classes of m.p.s.‘s. These results extend and 

are more detailed than the results of [5]. (See also [lo].) 
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3.1. Definition of the classes 

Let 0: S+ T be an m.p.s. 

- 19 is in class I if 0 is a Z&morphism. 

- 8 is in class II if 19 is a$-morphism and is injective on &-classes. 

- 0 is in class III if, using the notations of Proposition 2.6(3), J’B-’ =JU Q, and 

J<JQ. 

- 19 is in class IV if, using the notations of Proposition 2.6(3), J’B-’ = JU Q, and 

J and Q are not $-comparable. 

After Propositions 2.5 and 2.6, these classes are disjoint and cover the class of 

all m.p.s.‘s. In terms of &singular$classes, we have the following: 

Proposition 3.1. Let 8 be an m.p.s. 
(1) 6’ is in class I or II iff there is exactly one O-singular $-class J, and JO n 

(S\J)B=O. 
(2) 6’ is in class III iff there exists a &singular&?-class Q such that, if J’ is the&?- 

class containing QO, J’K’ = J U Q with J<, Q (J may also be O-singular). 
(3) 19 is in class IV iff there exist two O-singular $-classes that are not $- 

comparable. 

Proof. (1) is a consequence of Proposition 2.6(2) and of the fact that Zmorphisms 

are g-morphisms. 

(2) Let 0 be in class III. By definition, we have J’K’ = J U Q and, after Proposi- 

tion 2.1, JO = J’. Also, after Proposition 2.6(3), 0 is a bijection from S \ (JU Q) on- 

to T\ J’. Let - be defined on S by s-s’ iff either s =s’ or s, S’E J and se = s’B. 

- is a congruence. Let indeed s-s’ (s, S’E S) and u, u E S’. If s = s’, then usu = 

us’u. Otherwise, s, S’E J and se =s’0, and hence (uso)e= (us’u)e. If (uso)u E J’, then 

usu, us’u E J’e -I = JU Q and, since usu, us’u 5 J J, we have usu, us’u E J, so that 

usu - us’u. 

e factorizes as 

s/- . 
If e2 is an isomorphism, then sB=s’B implies s-s’ and hence sJs’, which is 

absurd since Qec J’= Jt9 (by Proposition 2.1). So e1 is an isomorphism, i.e. - is 

the equality on S. Thus 8 is one-to-one on S \Q, and Q is e-singular. 

The converse is immediate. 

(3) Let 0 be in class IV. By definition, we have J’B-’ = J U Q, where J and Q are 

not g-comparable. After Propositions 2.1 and 2.6(3), JO= Qf3= J’ and 0 is a bijec- 

tion from S \(J U Q) onto T \ J’. Let -Q and -J be defined on S by s-Q s’ (resp. 

s-Js’) iff either s=s’ or S,S’E Q (resp. J) and sB=s’8. 

By the same reasoning as above, we prove that -J is a congruence that is the 
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equality. Thus Q is &singular. But, here, J and Q play symmetrical parts, so that 

J is also &singular. 

The converse is immediate. 0 

We now turn to the description of each of the four classes. We shall freely use 

the results and notations of Section 1. 

3.2. Class I 

Let 8 : S + T be in class I, and let J be the d-singular g-class. We shall distinguish 

two subclasses based on the regularity of J: we say that B is in class I, (resp. class 

IN) if J is a regular (resp. null) g-class. The regularity of a g-class is stable under 

reverse so that we have: 

Proposition 3.2. 8 is in class IR (resp. IN, I) iff so is 0’. III 

We have J’=A’(A,B,G,P) and J”=d’(A’,B’,G’,P’) for some A,A’,B,B’, 

G, G’, P, P’. Since 6’ is a %-morphism, it is also an .99-, an 9- and a $-morphism. 

Further, JB = J’ (Proposition 2.6(2)). In particular, the image of a z%‘- (resp. 9-, X-) 

class of J is a whole 9?- (resp. 9-, .JX’-) class of J’. So we can choose A’=A and B’= B 

with the mappings a and fi equal respectively to the identity functions of A and B. 

Also the group morphism s: G--t G’ is onto, i.e. there exists a non-trivial normal 

subgroup N of G such that G’= G/N (with fi the canonical projection). It is then 

easy to check that (a, g, b) 0 = (a, gN, b) for all a E A, b E B, g E G and that, if pb,a = 

0, thenpi,,= and if pb,afO, then~i,~=p~,~N (aeA, beB). 

Conversely, let N’ be a non-trivial normal subgroup of G. For any SE 

S\J, let w~=sOET\J’, and for any (a,g,b)EJ=AxGxB, let (a,g,b)cp= 

(a, gN’, b) E &‘(A, B, G/N’, Pa N’). Then there exists a semigroup structure on 

V= (T \ J’) U &‘(A, B, G/N’, P. N’) that makes rp : S + V a morphism iff N’ satis- 

fies the following conditions: 

(Cl) For any SES\J, aeA, bel?, g,,g2EG such that g,N’=g,N’, either 

s(a, gl, b) =s(a, g2, b), or 0, gl, g) = (a’, g;, b), 0, g2, b) = (a’, gi, 6) and g;N’=g;N’. 
(C2) For any s E S \ J, a E A, b E B, g,, g2 E G such that gl N’= g,N’, either 

(a,gi,b)s=(a,g2,b)s, or (a,gr,b)s=(a,g;,b’), (a,gZ,b)s=(a,&b’) and g;N’= 
g; N’. 

(C3) If pb,o=O, grN’=g;N’, g,N’=g;N’, then (ai, gr, b)(a,g,, b2)= (a,,&, b). 

(a, s;, b2). 
Clearly, then, (p is onto, one-to-one on S \ J and an &?-morphism. Further, if 

N= N’, then V= T and a, = 8, and hence N satisfies (Cl-C3). 

We now prove that cp is an m.p.s. iff N’ is minimal (for the inclusion relation) 

among all non-trivial normal subgroups of G, which implies by an elementary well- 

known theorem of group theory that N’ is isomorphic to TX ... x T for T a simple 

group. Let us suppose first that N’ is a minimal normal subgroup of G and satisfies 
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(Cl-C3). If v, = v)iv2, then @ : G + G/N’ factorizes into @ = @i Q2. Since N’ is mini- 
mal, one of 4, and e2 is an isomorphism and hence, either ql or v)~ is an isomor- 
phism: v, is an m.p.s. 

Conversely, let us assume that N’ is a non-trivial normal subgroup satisfying 
(Cl-C3) and such that u, is an m.p.s. Let N” be a normal subgroup of G contained 
in N’. If N” satisfies (Cl-C3) as well, let pi be the induced morphism, defined as 
above: spi = sp if se J, (a, g, b)qi = (a, gN”, b). spl = s’q+ (S,S’E S) implies sa, =.~‘a, 
so that a, = v)iq2. By minimality of ~1, one of ~~~~ is an isomorphism, and hence 
either N” = {l} or N”= N’. Thus N’ is a minimal normal subgroup. 

We conclude by showing that if N”cN’, N” always satisfies (Cl-C3). Let us 
notice first that (gN”),.o is a partition of G that refines (gN’)geo. The verifica- 
tion of (C3) is then immediate. We now prove that N” satisfies (Cl) (the verification 
of (C2) is dual). Let s E S \ J and g,, g, E G such that g,N” =g2N”. Then giN’= 
g,N’. Since N’ satisfies (Cl), for all CI EA and b E B, either ~(a, g,, b) =~(a, g,, b), or 
s(a, g,, b) = (a’, gj, 6), s(a,g2, 6) = (a’, g& 6) and g; N’=gi N’. In this last case, recall 
that, with the notations of Subsection 1 .l, 

The left translation by a,,su, preserves Hisi: let g, be the element of G (acting on 
the right on Hfi) that induces the same permutation of H& . Then g; =g,gl and, 
similarly, g; = g,g,. So g, N” = g, N” implies g; N” = g; N”. 

So we have proved 

Proposition 3.3. Let 8 be a morphism. 13 is an m.p.s. in class I with &singular 
g-class J = .M” (A, B, G, P) \ {l} iff there exists a minimal non-trivial normal sub- 
group N of G such that 6 is a bijection from S \ J onto T \ J’9 and (a, g, b) 19 = 
(a, gN, 6) for aN (a, g, b) E J. Hence N= S x ... x S for some simple group S. 0 

Example 1. (0) The typical example of IR is G + G/N, N a minimal normal sub- 
group of G a group. 

(1) Let S=A”(2,2,Z2,(f y)), T=A0(2,2,{1},(f 7)) and 8:S+T be given by 
(a, g, b)B = (a, 1,b) for all a, b in (1,2}, g in Z,: 19 is an m.p.s. of class IR . 

(2) Let now S={l,c,ao,a,,O} be given by c2=1, cai=aic=ai_i and aiaj=O 
(i,je (0, l}). Let T= { l,c,b,O} be given by c2= 1, cb=bc= 6, b2=0, and let 
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8:S-tT be defined by lt9= 1, &=c, @=are=b, O@=O. Then 0 is an m.p.s. of 
class 1,. 

r”- m 

s ~~qq’ 
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3.3. Class II 

Let 8 : S-r T be an m.p.s. of class II. We know that B is ag-morphism that is in- 
jective on ticlasses, that it has exactly one &singular$class J, that J’=JB is ag- 
class of T and that 0 is one-to-one from S \ J onto T \ J’. We shall sometimes iden- 
tify the sets S \ J and T \ J’ and consider that B is the identity function on that set. 

Proposition 3.4. One can find representations of J and J’, Jo =&‘(A, %, G, P) and 
J’O =&‘(A’,%‘, G’, P’) such that one of the following conditions holds: 

(1) % = %‘; G = G’; there exists an onto mapping a : A -+ A’ such that (a, g, b)B = 
(aa,g,b) andpb,a=pL,aa for all aEA, be% and gEG. 

(2) A = A’; G = G’; there exists an onto mapping p : % --, B’ such that (a, g, b)6’= 
(a,g,b%) andpb,a=pL,fi,a for all aEA, be% and gEG. 

Note that a morphism that satisfies both (1) and (2) is an isomorphism and hence 
not an m.p.s. If an m.p.s. B satisfies (l), we say that it identifies rows (or is in class 
II,,,). We say that it identifies columns (or is in class II,,,) if it satisfies (2). It is 
immediate that 

Proposition 3.5. Class II is preserved under the passage from 0 to t?‘, but classes 
II T0w and II,,, are interchanged. 0 

Proof of Proposition 3.4. Let Jo =&‘(A,%, G, P) and J” =&‘(A’,%‘, G’, P’) be 
arbitrary representations of J and J’. Since J/3= J’ and 19 is injective on Z-classes, 
the mappings a and /I (with the notations of Subsection 1.1) are onto, and f3 is a 
monomorphism. 

Note first that, since 8 is not a M-morphism, one at least of a and p is not one-to- 
one. Let now - be defined on S by s- s’ iff either s = s’, or s, S’E J, sBs’ and se = s’e. 
- is a congruence. Let indeed s-s’ and u, OES’. Then (UsU)0=(z&u)e. If 
(usu)@ J’, then usu = US’U since 0 is one-to-one on S \ J. If @so)8 E J’, then both 
usv and us’v lie in J= J’&‘. Since &@s’, we have usz!&?us’ and hence usv~I?us’u. So 
usv - us’v. 
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If p is not one-to-one, then - is not trivial. Indeed there exist sI , s2 in J such that 

sI.99s2, s,f?&3,8. Then s,I~=s,~u for some UET’ and, if &?=u, s,8=(s2u)8 and 

s199s2u (since s, u lies necessarily in J= J’O-‘). But 0 factorizes as 

S-T 

h’/ 02 

s/- . 
So 8, is an isomorphism, i.e. SO = s’B implies s5Zs’. Similarly, if a is not one-to- 

one, SO = ~‘8 implies ~9s’. So, if neither a nor p is one-to-one, SO = s’0 implies SY& 

and, since 8 is injective on sclasses, 8 is one-to-one. This is a contradiction and 

hence, one of a and /3, say a, is one-to-one. We can then assume that A =A’ and 

cz=id,. 

We now prove that 0 is an isomorphism from G onto G’ by showing that 6 maps 

some X-class of J onto a X-class of J’. Recall that he E H,“, and hh = ho8 ~Hrrr. 

Then k=uhh for some UET’ and, if of3=u, (t&)Q=k. Thus oh,~J=J’0”, 

u/z&?/r0 and, since a is one-to-one, uhO~kO. So oh, E Ht 1 and (uhO)O = k. 

We can now assume that G = G’ and 8 = ido. Recall that the isomorphism of J” 

with &‘(A, B’, G, P’) is given by the choice of elements ui, u;, u;, ul, (a EA, b E B’) 

of T’. We shall construct u,, z.?,, ub, 13~ (a EA, b E B), i.e. an isomorphism of Jo with 

.At”(A,B,G,P), such that (a,g,b)O=(a,g,b& (SEA, beB, geG). Let beB and 

b’= b/3E B’. Since 0 is a bijection from Rf fl Li onto Rffl Ll,, there exists 

kb E Rf n Li such that kb 0 = hi ubp and there exists ub E S’ such that kb = ho ub . Let 

also nb be such that ho = kbUb. Similarly, for SEA, there exists k, E Rf fl Lf such 

that k,O= u~h~. We can then choose U, and a, in S’ such that k,=u,h, and 

ho = z&k,. Then the computation of Subsection 1.1 turns into a simpler form and 

we have (a, g, b)O = (a, g, bp). It is clear, then, that &a =P;~,~. 0 

Example 2. (1) The most typical example of Class II is ‘identify equal rows’ or 

‘proportional rows’, e.g. let 

S=.Mfw!,, (; ;>> > T=4V0(1,2,Z2,(1 1)) 

and 8:S+T be given by (a,z,b)O=(l,z,b) for all a,b in (1,2}, z in Z2: 0 is an 
m.p.s. of class II,,, and 8’ : S’= S’ -+ T’=A”(2, 1, Z,, (1)) is in class II,,,. 

z2 1 1 

El 

1 1 

Bl1 Z, 

(2) For kzl, let U,={l,a, ,..., ak} be the monoid given by aiaj = aj (1 I i,jl k). 

Let kll and O:Uk+,-+U, be given by lO=l, aiB=ai (Irisk) and ak+16=ak. 

Then 6’ is in class II,,,. 
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(3) Note that the f?-singular$-class of a class II-m.p.s. need not be regular. Let 

S = { 1, b, ~0, ai, 0) with b2 = 1, aiaj = 0, bai = a; and ai b = a, _ i (0 I i, j 5 l), and let 

T={l,6,a,O} with b2=1, ab=ba=a and a2=0. If 8:S+T is given by 1~9=1, 

08=0, bB= b and Uie= a (i=O, l), then 0 is in class II,,, and {ao,al} is the 8- 

singular g-class. 

Let 8: S+ T be an m.p.s. Recall that 8 is in class III if there exists a$class J’ 

of T such that J’F’ is the union of two&?-classes J and Q such that J<, Q and Q 

is e-singular. So 0 induces a bijection from J onto J’ (Proposition 2.1) and hence, 

Jo and J” are isomorphic O-simple semigroups. Also, since 8 is not a Z-morphism, 

0 is injective on ,X-classes (Proposition 2.5) and hence the Schtitzenberger group of 

Q is a subgroup of the Schtitzenberger group of J. 

It will be of some use to distinguish within class III three subclasses based on the 

regularity of J’, J and Q. If J’ is a nullg-class, then so are J and Q. In this case, 

we say that t9 is in class IIIN,,,, (the letter N stands for null). Else, J’ is regular and 

so is J, after Proposition 2.1. If Q is null we say that 0 is in class IIIN,, , and if 

Q is regular, we say that B is in class IIIR>R. Note that there is no class IIIR,N. 

The following proposition is easy to check: 

Proposition 3.6. t9 is in class III (resp. IIIN,N, III,,,, IIIR,R) iff 8’ is in this 
class. 0 

We now give examples of m.p.s.‘s in these classes, with either one or two 0- 

singular $-classes. 

Example 3. (0) The typical example of III,,, isS-+{l}=TwhereSisaregular 

Rees matrix semigroup over {l}, i.e. S=&‘(A, B, {l}, C) where C is a matrix of 

zeros and ones with distinct rows and distinct columns and no zero rows or zero col- 

umns. There is only one e-singular g-class unless C=(l), i.e. let S= U, = { l,O}, 

T= { l} and 0 be the morphism from S onto T. Then Q= {l} and J= (0) are 8- 

singular, and 0 is in class IIIR,R. 

(1) Let S={~,b1,bZ} and T=(br,&} be given by u~=u, bibj=bj, Ubj=bi and 

bia=b2 (lsi,j<2). Let c?:S-+Tbe given by biB=bi (i=1,2) and ue=b,. Then 0 

is again in class III,,, and Q= {a} and J= {b,, b2} are B-singular J-classes. 
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(2) Let S = {a, 0} be given by a2 = 0, T= {l} and 8 be the morphism from S onto 
T. 6’ is in class III,,, and both Q= (a} and J= (0) are &singular. 

Let now S={u,b1,b2} and T={b,,bZ} be given by b;bj=bj, a2=bia=bl and 
ab;=b,(lri,js2). Let B:S-+Tbegivenbybi0=bi(1~ir2)anda0=br. Then8 
is again in class IIIN,R and Q = (a} and J= ( bl, b2} are the B-singular $-classes. 

0 

hF*%-Tq 

(3) Let S= {O,a, b,c} and T= {O,a, b) be given by a2=a, ab= ba=ac=ca=c, 
bc=cb=b2=c2=0, andlet f?:S-tTbedefined byaB=a, bB=cB=b, 00=0. 8isin 
class IIIN,N and both Q= {b) and J= {c} are B-singular. 

1’, ; I 
0 b 

e 

q C 

Let finally S = {a, bo, bl, c, d, 0) and T= { bo, bl, c, d, 0) be given by d2 = c2 = d, 
Cd=dC=C (SO {C,d}-~2), b;bj=abi=bia=O, bi=dbi=bi, biC=Cbi=bl_j 

(Ori,jsl), ad=du=b, and ca=ac=bo. Let also 0 : S+ T be given by the identity 
on T and a0 = b,. 8 is again in class IIIN,N and Q = {a} is the only &singular 

g-class. 
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3.5. Class IV 

Recall that for an m.p.s. 19 : S+ Tin class IV, there exists a uniqueg-class J’ of 
T such that J’B-’ is the union of twog-classes J and Q, that are notg-comparable. 
After Propositions 2.1, 2.5 and 3.1, 0 induces a bijection, respectively from J and 
Q onto J’, 8 is injective on &classes, and both J and Q are &singular. Also, J’, 
J and Q are null g-classes. Also Jo, Jo and Q” are isomorphic and J’, J and Q 

have isomorphic sets of 5% and 9%classes and isomorphic Schutzenberger groups. 

Example 4. If k~ 1, let Sk = { 0, al, . . . , ak} with aiaj = 0. Then 8 : Sk+ I+ Sk given by 
08=0, aiO=ai (l<irk) and ak+lO=ak is an m.p.s. of class IV. 

3.6. V-morphisms and m.p.s. ‘s 

Using the characterizations of aperiodic and LG-morphisms given in Proposition 
1.1 and the description of m.p.s.‘s in the above sections, it is easy to check the fol- 
lowing: 

Proposition 3.1. Let t9 be an m.p.s. 8 is an aperiodic morphism iff 6 is not in class 
IR. 0 is an LG-morphism iff tl is not in class IIIR,R. 0 

Note that these properties of morphisms are rigid, that is, if 0i : S -+ V and 
e2 : I/+ T are onto morphisms, 8 = 8i f& is aperiodic (resp. an LG-morphism, an 
LI-morphism, a regular morphism) iff so are f+ and e2 (Propositions 1.1 and 1.2). 
Thus we have 

Proposition 3.8. Let 8 be any onto morphism, and let B = 8, ..’ 0, be a factoriza- 
tion of I3 in m.p.s.‘s. Then 8 is aperiodic (resp. an LG-morphism, an LI-morphism) 
iff none of the 0,‘s is in class I, (resp. IIIR,R, IR) nor IIIR,R. 0 
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