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Dans cet article, nous donnons une classification compléte des morphismes de semigroupes non
factorisables §: S— T, ou S et T sont finis. Certaines propriétés des morphismes de semigroupes
finis ¢ : $— T sont mises en relation avec les classes des morphismes non factorisables dont ¢ est
le produit.

In this paper, we give a complete classification of non-factorizable semigroup morphisms
@:S—- T, where S and T are finite. Certain properties of semigroup morphisms ¢ :S- T are put
in correspondance with the classes of the non-factorizable morphisms of which ¢ is the product.

Introduction

All the semigroups considered here are finite. In this paper, we give a complete
classification of non-factorizable semigroup morphisms 8:S—T.

The motivation for this work will be made explicit in part II [8], in which we shall
characterize, for each of the classes that we distinguish here, classes of monoids V'
such that there exists an injective relational morphism (division) ¢:S< V| T for
which 8 =gn. Here ] denotes either the semidirect or the 2-sided semidirect product,
and 7 denotes the canonical projection of ¥} T onto T. These results will then be
extended to larger classes of relational morphisms € and in particular to aperiodic
morphisms, LG- and LI-morphisms and regular LG- and LI-morphisms. The results
of this article and part II were announced in [7]. They are also in [10].

The classification of non-factorizable semigroup morphisms, or maximal proper
surmorphisms (m.p.s.’s) was first studied in [5] in which one can find a classifica-
tion somewhat rougher than the one presented here.

* Partially supported by National Science Foundation grant DMS 8502367.
** Partially supported by the Programme de Recherche Coordonnée Mathématique et Informatique.
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The paper is divided as follows: Section 1 reminds the reader of the classical
results of semigroup theory that will be used, and in particular of facts relative to
the Schiitzenberger group of a g-class, and to the varieties of finite semigroups,
monoids and categories. In Section 2, the definition and general properties of
m.p.s.’s are discussed. Finally, the detailed classification of m.p.s.’s is described in
Section 3, where numerous examples are given.

1. Preliminaries

We shall review in this section some classical tools for the description of
semigroups and relational morphisms. See [2] and [9]. Recall that, if S and T are
semigroups, a relational morphism ¢ : S— T is a relation (i.e. a mapping from S into
27T) such that, for all s and ¢ in S, sp #0 and (s@)(tp) C (st). ¢ is injective if, fur-
ther, sp Ntp#0 implies s=¢. In this case, we say that S divides T and we write
@:S<T(or S<T).

We denote by S’ the monoid SU {7} where / is an identity and by S" the monoid
equal to S if S is a monoid, to S’ otherwise. R, &L, A, 4 and @ denote the classical
Green relations.

1.1. Schiitzenberger group of a g-class

We recall here a few results concerning the structure of the g-classes of a
semigroup S. For detailed proofs, see [1, 2,4, 10].

Let A and B be finite non-empty sets, G be a finite group, and P be a B X A-matrix
with entries in GU {0}. .#°(A, B, G, P) denotes the semigroup (4 x G x B)U {0}
defined by (a,8,b)(a’,g’,b')=(a,gpp o D), if Py, ,-#0, 0 otherwise. M %A, B,G, P)
is regular iff each row and each column of P has a non-zero entry; in this case it
is a O-simple semigroup and A x Gx B is a g-class.

If Jis a g-class of a semigroup S, Let JO=Ju {0} be the semigroup defined, for
all s and ¢ in J, by s-t=st if steJ, 0 otherwise. It is well known that J®=
#°(A, B, G, P) for some A, B, G, P, with P either identically zero or a regular
matrix. Moreover, the sets 4 and B can be chosen to be respectively the sets of %#-
and Z-classes of J. In fact, the #-classes are RS ={a} x Gx B (¢€ A) and the &-
classes are Lf, =AXGX{b} (beB). The group G is the Schiitzenberger group of J.
Given any #¢-class H of J, G is isomorphic to the groups of permutations of H in-
duced, respectively, by the right and left translations by elements of S that preserve
H. Both these groups are regular transitive permutation groups whose actions com-
mute. If H is itself a group, then G is isomorphic to H.

Let then 6:S— T be a morphism, J be a g-class of S, and J’ be the g-class of T
containing J8. J°=.#°(A,B,G,P) and J'°=.#°(A’,B’,G’, P’ for some A, A’, B,
B’, G, G', P, P'. Since &- (resp. Z-) equivalent elements of S have &- (resp. &-)
equivalent images under 6, 6 induces mappings «: 4— A’ and §: B-— B’ such that
R56CRE and L Hngﬂ for all ae A and beB. Let us note that, if p,,#0
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(aeA,beB), then L}- RS CJ and hence Lgﬁ-ngJ and hence Lgﬁ-R,,Ta cJ', i.e.
p[,ﬁ, 2 *0. Finally, the characterizations of G and G’ as permutation groups over
arbitrary #-classes of J and J’ make it easy to check that € induces a group mor-
phism §: G- G’.

Since we shall need later a more precise description of the action of 8 on J, we
now turn to (somewhat painful) technicalities. Let us first choose reference
elements, denoted by 1, in 4 and B, and let us denote also by 1 the elements 1¢ and
18in A’ and B’. For each a€ A (resp. b € B) there exist u, and 7, (resp. v, and &)
in S such that the left translation by u, (resp. the right translation by v,) is a bijec-
tion from RS onto RS (resp. L§ onto L3), and the left translation by &, (resp. the
right translation by &) is the reciprocal bijection from R;f onto RIS (resp. L‘Z onto
L“f). We choose u,, #;, v; and 0, to be equal to 1. In fact, the isomorphism between
M (A, B,G, P) and J® is given by assigning to (a, g, b) the element u,(hy- g)vy, where
h, is a (arbitrarily) fixed element of the s#-class Hf 1 =RfﬂL‘f (here, G is identified
with the permutation group of Hf ; induced by the right translations of S that
preserve Hy .

The same is true for the Z-class J’ of T and we may choose, similarly, elements
Uy, U, vy, Uy in T for all '€ A’, b’e B, and hj in H | =R] N L]. We identify
G’ with the permutation group of HLTI induced by the right translations of T that
preserve H{l. In particular, the group morphism & is such that gf (g€ G) is the
(uniquely determined) element of G’ such that (k- g)0=h,- g6.

Let then (a, g b)=u,(hy- g)v, be any element of J. Then

(a,8,b)0 = (u,(hy- g)vp)0=(u,0)(hy- g0)(v,0)
and, since (4,8 b)8€RI, N Lig,

(@, 8, )0 = ug (0 1, 0))(hg - £0)((0, 0)tp)) 3.

Let us denote by d,, the element of G’ induced by the right translation by (v, G)E’,ﬂ,
and by g, the left permutation of H,,Tl induced by the left translation by u,(u,6).
Then, (a,g b)0=1u,,(g,- hy- g9 db)vl',ﬁ. See [1, Chapter 7] for more details.

1.2. Varieties and V-morphisms

Recall that an S- (resp. M-, G-) variety is a class of finite semigroups (resp.
monoids, groups) closed under division and finite direct product. Varieties are
studied in detail in numerous works, and in particular in [2,4]. We shall list here
some useful varieties.

G is the variety of all groups and I the trivial M-variety.

A is the M-variety of aperiodic (i.e. combinatorial, group-free, #trivial)
monoids.

R (resp. R") is the M-variety of @#-trivial (resp. &-trivial) monoids.

J, is the variety of idempotent commutative monoids. It is generated by
U, ={1,0}.
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If V is an M-variety, Vg is the S-variety generated by V and LV is the S-variety
of all semigroups S such that, for any idempotent e of &, eSe is in V. Note that
S € LG iff § has only one regular g-class: its minimal ideal. Note also that LI is the
S-variety of semigroups that are in LG and are aperiodic, i.e. LI=LG N Ag

Let V be a S-variety and 7: 85— T be a relational morphism. 1 is a V-morphism
if, for any subsemigroup T’ of Tthatisin V, T’z !is also in V. If V = Ag, 7 is said
to be aperiodic. The following easy results make the determination of aperiodic and
LG-morphisms easier. For a proof, see [4,6,9].

Proposition 1.1. Let 1:S— T be a relational morphism.
e The following are equivalent:
(1) 1 is aperiodic;
(2) for any idempotent e of T, er ! € Ag;
(3) the restriction of t to any group of S is injective.
o The following are equivalent:
(1) tis an LG-morphism;
(2) for any idempotent e of T, er ' e LG;
(3) the restriction of t to any copy of U, is injective. [

LG-morphisms, when functional, are sometimes called y(U;)- or & '-morphisms
[1,5,6,9].
Note also the following result:

Proposition 1.2. Let §,:S—T and f,: T—V be surmorphisms, =§,5,, and W
be a S-variety. Then, [ is a W-morphism iff B, and 3, are W-morphisms.

Proof. Let us assume first that 8, and f, are W-morphisms and let us consider a
subsemigroup ¥V’ of V that is in W. Then V’85 " is in W, and hence so is V'~ ' =
V'py 1),81“ L. B is a W-morphism. Conversely, let us assume that g is a W-
morphism. If V¥’ is a subsemigroup of ¥ in W, then V'g;'=(V’'8~" B, divides
V'8! and hence is in W: 8, is a W-morphism. If 77 is a subsemigroup of T that
is in W, T'8;'c(T'By)B~". Since T'B,<T’, T'B, is in W and hence so are
(T’By)B~" and T'B;!: B, is also a W-morphism. [

2. Maximal proper surmorphisms and #-singular g-classes

A maximal proper surmorphism or m.p.s. [5] is an onto semigroup morphism
#:S— T that is not an isomorphism and is such that, if § =6, 6,, then one of 8, and
f, is an isomorphism. It is clear that any onto morphism # can be written as a pro-
duct 6=0,6,---6, of m.p.s.’s.

M.p.s.’s have been studied by the first author and this section reviews some of
the results proved in [5]. In Section 3 we shall extend the results of [5] and classify
the m.p.s.’s.
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All the semigroup morphisms considered in this section are assumed to be onto.
Examples of m.p.s.’s are given in Section 3.

2.1. B-singular g-classes
The first result deals with arbitrary onto morphisms.

Proposition 2.1. Let 8:S— T be an onto morphism, and let J' be a g-class of T.
Then J'6~'=J,U - UJ; is a union of g-classes of S, and if J; (1<i<k)is <;-
minimal among J,, ..., Jy, then J;0=J'. Furthermore, if J' is regular, then the in-
dex i is uniquely determined, and J; is itself regular.

Proof. Since sgs’ implies s§¢s’8, J'0~'=J,U---UJ,. Let J; (1<i<n) be =<,
minimal among Jj,...,J; and consider seJ; and feJ’. Then sf¢¢ and hence
¢ = (usv)6 for some u and v in 8. Thus usve J’6 " and usv <, s so that usve J;. So,
Jig=J".

If J' is regular, let e be an idempotent in J’. Then ef~! is a subsemigroup of §
and a subset of J’87!. So, if J is the g-class of S that contains the minimal ideal
ofed™ !, Jis a regular g-class of §, and one of Ji,...,J;. Let now seJ'#7!. Since
sfge, e=(usv)@ for some u and v in S’ Then J<,usv<,s. Thus J is the unique
<;-minimal element of {J,,...,J;}. O

Let §:S— T be an m.p.s. A g-class J of S is #-singular if § is one-to-one on the
set S\ J.

Proposition 2.2. Let I be an ideal of S, maximal among the ideals of S on which
0 is one-to-one. If J is a g-class minimally < j;-above I, then J is G-singular.

Proof. Since 7UJ is an ideal strictly containing 7, 8 is not one-to-one on U J.
Define the equivalence relation ~ on S by s~ s’ iff either s=s" or s5,s'e /U J and
s0=s’6. Since TU J is an ideal, ~ is a congruence, and 8 factorizes as follows:

[
S§—— T
N,
S/~.
Since 8 is not one-to-one on IUJ, ~ is not the equality and hence 6, is not an
isomorphism. Therefore 6, is an isomorphism: s6=s'6 iff s~s’. So, whenever

sO=s'0 and s,s'¢ J, either s,5’€l, on which 8 is one-to-one, or s,s’'e S\ (IUJ)
where ~ is equality. Thus # is one-to-one on S\J. 0O

We can deduce from Proposition 2.2 the existence of #-singular g-classes.

Corollary 2.3. S contains a 0-singular 4-class.
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Proof. Since @ is not one-to-one, an ideal I, of S, maximal among the ideals on
which 6 is one-to-one, exists (recall that @ is an ideal) and is a strict subset of S. Fur-
ther, ideals are union of g-classes, so that there exist g-classes entirely in S \ 1. So
we can use Proposition 2.2. U

The existence of §-singular g-classes implies the following property.

Proposition 2.4. Let I be an ideal of S on which 0 is not one-to-one. Then 0 is one-
to-one on S\ I and (S\1)6N10=4.

Proof. Let J be a f-singular 4-class. Since 6 is not one-to-one on /, JC I and hence
6 is one-to-one on S\ 7C S\ J. Let then I,={seI|J%,s}: I is an ideal where 0 is
one-to-one. Let ~ be defined on § by s~s’ iff either s=s', or s5,5'e I,UJ and
s8=s’0. As in the proof of Proposition 2.2, ~ is a congruence and sf@=s'0 iff s~s'.
It is a consequence of the definition of ~ that classes of elements of I,UJ and of
S\ (U J) are disjoint. Thus 8 separates I,UJ from S\ ({,UJ). O

Let us finally note the following. We denote by S* the reverse semigroup of S:
S'={s"|seS} and s"-t"=(ts)". If §:S— T is a relational morphism, the reverse
morphism 6" : S"— T" is defined by s"0"={¢"|t€s0} (s€ S). 0 is an m.p.s. iff " is
one, and J, g-class of S, is -singular iff J* is #-singular.

2.2. Properties of m.p.s.’s

Let o be one of the Green relations 4, &, & or &, and let §: S— T be an onto
morphism. We say that 8 is a A-morphism if s84s’6 implies so¢s’. We say that 6
is injective on HK-classes (or a y(K)-morphism) if s§=s'0 and so¢s’ implies s=s’
(s,5'eS).

One can check [10] that &##~morphisms are g-morphisms, that g-morphisms are
LG-morphisms, and that morphisms that are injective on s#¢-classes are aperiodic.

Let 8:5S— T be an m.p.s. A main result of [5] is the following:

Proposition 2.5 [5]. @ is either injective on H-classes, or is a H-morphism, and 0
cannot be both.

Proof. It is clear that an s#~morphism that is injective on &#-classes is one-to-one,
and hence is not an mp.s.

Let us suppose that 8 is not injective on S#¢-classes, and let us define ~ on S by
s~s’if s =s'6 and s#s’. Then ~ is not trivial. Let J be a §-singular g-class: 6 being
one-to-one on S\ J, ~ is the equality on S\ J.

Moreover, ~ is a congruence. Let indeed s~s’and w,veS". If sors’isin S\ J,
then s and s’ are in S\ J since s3’. Thus s=s’ and usv=us’v. If s,s’eJ, then
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s =5'0 and (usv)f=(us'v)0. If one of usv and us’v, say usv, is in J, then, by the
classical properties of Green relations s’ implies usv#us’v. So usve Jiff us’'ve J,
in which case usv#us’v: usv~us’v. Finally, if both usv and us’v are out of J,
usv =us'v since (usv)0=_(us'v)0.

But 4 factorizes as

S————>T

N,

S/~

and 6, is not an isomorphism. So 8, is one-to-one and s =s'6 iff s~s’. This means
that s8=s’6 implies s#%’: 0 is a #morphism. [

We now prove that § contains at most two #-singular g-classes.

Proposition 2.6. Let § be an m.p.s.

(1) The number of 0-singular g-classes is 1 or 2.

(2) If 0 is a g-morphism, S contains exactly one 0-singular 4-class J, J8 is a 4-
class in T and JOO~ ' =J.

(3) If 0 is not a g-morphism, there is exactly one 4-class J' of T such that J 97!
is not a g-class. Then J'07" is the union of two g-classes, J'0~'=JU Q, of which
one at least is 8-singular. Further, any 0-singular §-class is either J or Q.

Proof. (1) is a consequence of (2) and (3).

(2) Let 8 be a g-morphism and assume that J, and J, are distinct #-singular ¢-
classes. Then 6 is one-to-one on S\ (J;UJ), Ji(cS\J;) and JS,(CS\J)).
Moreover, since 6 is a g-morphism, J,8, J,0 and (S \ (J,; U J,))0 are pairwise dis-
joint, and hence @ is one-to-one: this is a contradiction.

(3) If 6 is not a g-morphism, there exists a g-class J’ of T such that Jo ' =
JiU--UJy, k=2. Let J be <;-minimal in {J;,...,J;} and Q be <,-minimal in
{HHU--ULI\{J}. Let also I={seS|s=<;J or s<;Q}. I is an ideal containing
JU Q and hence, after Proposition 2.1, § is not one-to-one on /. Then, by Proposi-
tion 2.4, 16N (S\1)8=0. So, if k=3, for any J; that is different from J and Q,
J;€ S\ I and hence J;0NI16=90. But J;,0cJ' =(JU Q)0 If: we have a contradic-
tion and thus J'6 '=JU Q.

Since 6 is not one-to-one on J U Q, no other g-class than J or Q can be §-singular.
This also proves the uniqueness of J’. [

3. Classification of mp.s.’s

In this section, we describe the four classes of m.p.s.’s. These results extend and
are more detailed than the results of [5]. (See also [10].)
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3.1. Definition of the classes

Let 8:S— T be an m.p.s.
- @is in class 1 if @ is a Sf~morphism.
- @ is in class 11 if @ is a g-morphism and is injective on J#-classes.
6 is in class 111 if, using the notations of Proposition 2.6(3), J’8 '=JUQ, and
J<; Q.
6 is in class 1V if, using the notations of Proposition 2.6(3), J’6~'=JUQ, and
J and Q are not g-comparable.
After Propositions 2.5 and 2.6, these classes are disjoint and cover the class of
all m.p.s.’s. In terms of §-singular g-classes, we have the following:

Proposition 3.1. Let 8 be an m.p.s.

(1) 8 is in class 1 or 11 iff there is exactly one O8-singular J-class J, and JON
(S\J)6=0.

(2) 8 is in class 111 iff there exists a 0-singular 4-class Q such that, if J' is the 4-
class containing QO, J'0~'=JUQ with J<,Q (J may also be 0-singular).

(3) 0 is in class IV iff there exist two @-singular g-classes that are not 4-
comparable.

Proof. (1) is a consequence of Proposition 2.6(2) and of the fact that #-morphisms
are 4-morphisms.

(2) Let 8 be in class I11. By definition, we have J'8~'=JU Q and, after Proposi-
tion 2.1, J8=J'. Also, after Proposition 2.6(3), 8 is a bijection from S\ (J U Q) on-
to T\ J'. Let ~ be defined on § by s~s’ iff either s=s’ or 5,5’ J and sf=s'0.

~ is a congruence. Let indeed s~s’ (5,5s’€ S) and u,ve S . If s=s’, then usv=
us’v. Otherwise, s,s'e J and s8=s'6, and hence (usv)8 = (us'v)é. If (usv)v e J', then
usv, us’'veJ'9! =JU Q and, since usv, us’'v<,J, we have usv, us’'veJ, so that
usv ~ us’v.

0 factorizes as

§——— T
N‘ /92’
S/~.

If #, is an isomorphism, then sf#=s'6 implies s~s’ and hence sJs’, which is
absurd since Q8C J'=J8 (by Proposition 2.1). So 6, is an isomorphism, i.e. ~ is
the equality on S. Thus 6 is one-to-one on S\ Q, and Q is #-singular.

The converse is immediate.

(3) Let 8 be in class IV. By definition, we have Jel=gU Q, where J and Q are
not g-comparable. After Propositions 2.1 and 2.6(3), J8=Q60=J"and @ is a bijec-
tion from S\ (/U Q) onto T\ J". Let ~; and ~; be defined on S by s~¢ s’ (resp.
s~ ') iff either s=s' or s5,5"€ Q (resp. J) and s6=s"8.

By the same reasoning as above, we prove that ~; is a congruence that is the
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equality. Thus Q is -singular. But, here, J and Q play symmetrical parts, so that
J is also 8-singular.
The converse is immediate. [

We now turn to the description of each of the four classes. We shall freely use
the results and notations of Section 1.

3.2. Class 1

Let §: S— T be in class [, and let J be the §-singular Z-class. We shall distinguish
two subclasses based on the regularity of J: we say that 6 is in class Iz (resp. class
Iy) if J is a regular (resp. null) g-class. The regularity of a g-class is stable under
reverse so that we have:

Proposition 3.2. 0 is in class I (resp. Iy, 1) iff so is 6. [

We have J°=.#°A4,B,G,P) and J'°=.#%(A, B’,G',P") for some A,A’,B,B’,
G,G', P, P’. Since 8 is a s#-morphism, it is also an #-, an &- and a ¢-morphism.
Further, J@=J’ (Proposition 2.6(2)). In particular, the image of a &- (resp. -, #~)
class of J is a whole - (resp. &-, #-) class of J'. So we can choose A’=A and B'=B
with the mappings @ and f equal respectively to the identity functions of A and B.
Also the group morphism §: G — G’ is onto, i.e. there exists a non-trivial normal
subgroup N of G such that G’=G/N (with 4 the canonical projection). It is then
easy to check that (a, g 0)0=(a,gN,b) forallaec A, beB, ge G and that, if p, ,=
0, then p}, ,=0 and if p, ,#0, then p, ,=p, ,N (a€A, beB).

Conversely, let N’ be a non-trivial normal subgroup of G. For any se
S\J, let wp=s0eT\J’, and for any (q,g b)eJ=AXGXB, let (a,g b))y =
(a,gN’,b)e J{O(A,B, G/N’,P-N’). Then there exists a semigroup structure on
V=T \J)U#°A,B G/N,P-N') that makes ¢ : S — ¥ a morphism iff N’ satis-
fies the following conditions:

(C1) For any seS\J, aeA, beB, g,8¢€G such that g,N'=g,N’, either
S(a’ &1s b) =s(a, &2, b), or S(a’ gl’g) = (a” glla b)a S(a’ &2» b) = (a” gé’ b) and gl’legéN,

(C2) For any se S\J, ae A, beB, g,8 €G such that g,N'=g, N’, either
(a, £ b)S: (a’ 82 b)S, or (as &1 b)S: (ay gI/’ bl)’ (a’ £25 b)S: (a’ gé9 bl) and g{ N'=
N

(C3) If py =0, giN'=g[N’, &, N'=g;N’, then (a,, g, b)(a, &, b)) =(a,, &, b)-
((1, gés b2)

Clearly, then, ¢ is onto, one-to-one on S\ J and an s¢-morphism. Further, if
N=N’, then V=T and ¢ =46, and hence N satisfies (C1-C3).

We now prove that ¢ is an m.p.s. iff N’ is minimal (for the inclusion relation)
among all non-trivial normal subgroups of G, which implies by an elementary well-
known theorem of group theory that N’ is isomorphic to Tx--- X T for T a simple
group. Let us suppose first that N’ is a minimal normal subgroup of G and satisfies



278 J. Rhodes, P. Weil

(C1-C3). If ¢p=9,9,, then ¢: G- G/N’ factorizes into ¢ =¢@,@,. Since N’ is mini-
mal, one of @, and @, is an isomorphism and hence, either ¢, or ¢, is an isomor-
phism: ¢ is an m.p.s.

Conversely, let us assume that N’ is a non-trivial normal subgroup satisfying
(C1-C3) and such that ¢ is an m.p.s. Let N” be a normal subgroup of G contained
in N’. If N” satisfies (C1-C3) as well, let ¢; be the induced morphism, defined as
above: s, =s¢ if s¢J, (a,8 b)p, =(a, gN",b). sp,=5"p, (5,5'€S) implies sp=5"¢p
so that ¢ =¢,¢,. By minimality of ¢, one of ¢, ¢, is an isomorphism, and hence
either N”= {1} or N"=N’". Thus N’ is a minimal normal subgroup.

We conclude by showing that if N”"CN’, N7 always satisfies (C1-C3). Let us
notice first that (gN"),.¢ is a partition of G that refines (gN");c . The verifica-
tion of (C3) is then immediate. We now prove that N” satisfies (C1) (the verification
of (C2) is dual). Let se S\ J and g, g, € G such that g N"=g, N”. Then g;N'=
g, N'. Since N’ satisfies (C1), for all € A4 and b € B, either s(a, g, b) =s(a, g;, b), or
s(a, g1, b)=(a’, &1, b), s(a,g,,b)=(a’, g5, b) and giN'=g; N'. In this last case, recall
that, with the notations of Subsection 1.1,

s(a, g1, b) = su,(hy- g)vp =ty (hy- gy = Uy (T Stig)(hy- 81) V.

The left translation by #, su, preserves Hf 1 let g be the element of G (acting on
the right on Hf 1) that induces the same permutation of Hf ;- Then g;=g,g, and,
similarly, g;=g,8,. So g N"=g, N” implies g N" =g, N".

So we have proved

Proposition 3.3. Let 6 be a morphism. 0 is an m.p.s. in class 1 with 0-singular
g-class J= .M (A4, B, G, P)\ {1} iff there exists a minimal non-trivial normal sub-
group N of G such that 8 is a bijection from S\J onto T\J'0 and (a,g,b)0=
(a,gN, b) for all (a,g,b)eJ. Hence N=S X --- X S for some simple group S. [

Example 1. (0) The typical example of 1 is G— G/N, N a minimal normal sub-
group of G a group.

(1) Let S=#°2,2,7Z,,(} 9), T=4#°2,2,{1},(} 9)) and 6:S— T be given by
(a,8,0)0=(a,1,b) for all a,b in {1,2}, g in Z,: § is an m.p.s. of class I.

Z, | 1|0 1|0 | {1}

(2) Let now S={1,caga;,0} be given by ¢*=1, ca;=a;c=a,_; and g;a,=0
(,je{0,1}). Let T={1,c¢,b,0} be given by c¢t=1, chb=bc=b, b*=0, and let
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g:S— T be defined by 16=1, cf=c, gyf0=a,6=>b, 06=0. Then § is an m.p.s. of
class Iy.

z, z,
S 0 T
ap,ay | —— b

][]

Let 0:S— T be an m.p.s. of class II. We know that § is a Z-morphism that is in-
jective on ##-classes, that it has exactly one #-singular g-class J, that J'=J@ is a -
class of T and that 6 is one-to-one from S\ J onto T\ J’. We shall sometimes iden-
tify the sets S\ Jand T\ J’ and consider that 8 is the identity function on that set.

3.3. Class 11

Proposition 3.4. One can find representations of J and J', J° =4 °(4, B, G, P) and
J'O=.#°A’,B’",G’", P’) such that one of the following conditions holds:

(1) B=B’; G=G’; there exists an onto mapping o:A— A’ such that (a,g,b)0=
(aa, g, b) andp,,,,,=p,',,mfor all acA, beBand geG.

(2) A=A"; G=G’; there exists an onto mapping 8 : B— B’ such that (a,g,b)0 =
(a,8,bB) and py, ;=pp g, for all ac A, beB and geG.

Note that a morphism that satisfies both (1) and (2) is an isomorphism and hence
not an m.p.s. If an m.p.s. § satisfies (1), we say that it identifies rows (or is in class
II,w). We say that it identifies columns (or is in class II_) if it satisfies (2). It is
immediate that

Proposition 3.5. Class 11 is preserved under the passage from 0 to 6°, but classes
1w and 11 are interchanged. []

Proof of Proposition 3.4. Let J°=.#%A,B,G,P) and J'°=.«°",B',G’,P’) be
arbitrary representations of J and J’. Since J6=J' and 8 is injective on #classes,
the mappings a and f (with the notations of Subsection 1.1) are onto, and @ is a
monomorphism.

Note first that, since 8 is not a #-morphism, one at least of ¢ and 8 is not one-to-
one. Let now ~ be defined on S by s ~ s’ iff either s=s’, or 5,5'e J, s&s’ and s8=s'6.
~ is a congruence. Let indeed s~s’ and w,veS’. Then (usv)d=(us'v)g. If
(usv)f ¢ J’, then usv=us’v since 8 is one-to-one on S\ J. If (usv)8eJ’, then both
usv and us'v lie in J=J'6"". Since s9@s’, we have usdRus’ and hence usvRus’v. So
usv ~us’v.
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If £ is not one-to-one, then ~ is not trivial. Indeed there exist s;, s, in J such that
5\Rs,, §,045,0. Then 5,0= 326u for some ue 7 and, if vf=u, 5,6=(s,0)0 and
51 Rs,v (since s, v lies nece in J=J'07"). But 8 factorizes as
0

§— T

N
</

IS ViandH

So 6, is an isomorphism, i.e. s6 =50 implies s&®s’. Similarly, if a is not one-to-
one, sf=s'6 implies s&s’. So, if neither & nor # is one-to-one, s =s'@ implies ss’
and, since € is injective on #-classes, 6 is one-to-one. This is a contradiction and
hence, one of «a and B, say «, is one-to-one. We can then assume that A =4’ and
a=id,.

We now prove that 8 is an isomorphism from G onto G’ by showing that # maps
some -class of J onto a #¢-class of J’. Recall that hoerl and h6=hoeerl.
Then k=uhy for some ue T  and, if v6=u, (Vhy)6=k. Thus uhoeJ=J’6”',
vhy&hy and, since a is one-to-one, vhyRh,. So uhoerl and (vhy)8=k.

We can now assume that G=G’ and 0=1id;. Recall that the isomorphism of J°
with JI{O(A,B’, G, P’} is given by the choice of elements u,, Z’,, vl',,v_[, (ac A, beB’)
of T'. We shall construct u,, d,, b,, 0, (a€ A, b€ B), i.e. an isomorphism of JO with
A4 °(A, B, G, P), such that (a,g b)0=(a,g,bB) (ac A, beB, geG). Let beB and
b’=bfeB’. Since 6 is a bijection from R{NL] onto RIN LY., there exists
kye Ry N LS such that k0= A vpg and there exists v, € S" such that k,=#hyv,. Let
also o, be such that ha,=k,0,. Similarly, for ae A, there exists k,e RSN L3 such
that k,0=u_hs. We can then choose u, and #, in S such that k,=u,hy and
hy=1i,k,. Then the computation of Subsection 1.1 turns into a simpler form and
we have (a,g,b)0=(a,g bp). It is clear, then, that p, ,=ppz,. O

Example 2. (1) The most typical example of Class II is ‘identify equal rows’ or
‘proportional rows’, e.g. let

S=m°<2,2,22,<i ;)) T=#°1,2,7,(1 1)

and 6:S— T be given by (a,2,0)8=(1,z,b) for all ¢,b in {1,2}, zin Z,: 6 is an
m.p.s. of class II,,, and 8 :S"=8"- T =2, 1,Z,,(})) is in class II,;.

Z, | 1|1

1] 1]z

(2) For k=1, let U,={1,ay,...,a;} be the monoid given by a;a;=a; (1 =i, j<k).
Let k=1 and 8: U, ,—» U, be given by 18=1, @,0=a; (1<i<k) and a;,,0=ay.
Then 6 is in class Il .



Decomposition techniques for semigroups I 281

(3) Note that the #-singular g-class of a class II-m.p.s. need not be regular. Let
S={1,b,aq,a;,0} with b2=1, a;a;=0, ba;=a; and a;b=a,_; (0=<i,j<1), and let
T={1,b,a,0} with b>’=1, ab=ba=a and a*=0. If §:S— T is given by 16=1,
00=0, b@=>b and q;0=a (i=0,1), then 6 is in class 11, and {aya,} is the 6-

singular g-class.
* *
L,b Lb
o a __q._, a
* *
0 0

3.4. Class 111

Let 8: 58— T be an m.p.s. Recall that 8 is in class III if there exists a g-class J’
of T such that J’8"! is the union of two J-classes J and Q such that J<;Q and Q
is @-singular. So @ induces a bijection from J onto J’ (Proposition 2.1) and hence,
J% and J’° are isomorphic 0-simple semigroups. Also, since @ is not a #+morphism,
8 is injective on #-classes (Proposition 2.5) and hence the Schiitzenberger group of
Q is a subgroup of the Schiitzenberger group of J.

It will be of some use to distinguish within class III three subclasses based on the
regularity of J’, J and Q. If J' is a null Z-class, then so are J and Q. In this case,
we say that 6 is in class 111, 5 (the letter N stands for null). Else, J’ is regular and
so is J, after Proposition 2.1. If Q is null we say that 8 is in class 111y g, and if
Q is regular, we say that @ is in class Illg. ;. Note that there is ne class Il 5.

The following proposition is easy to check:

Proposition 3.6. 0 is in class 111 (resp. lysn, Wysg, Wlgsg) iff 07 is in this
class. [

We now give examples of m.p.s.’s in these classes, with either one or two 6-
singular g-classes.

Example 3. (0) The typical example of Illz., z is S— {1} =T where S is a regular
Rees matrix semigroup over {1}, i.e. S=.#°(4, B, {1}, C) where C is a matrix of
zeros and ones with distinct rows and distinct columns and no zero rows or zero col-
umns. There is only one §-singular g-class unless C=(1), i.e. let S=U,;={1,0},
T={1} and 8 be the morphism from S onto 7. Then Q={1} and J= {0} are 6-
singular, and 6 is in class Iz ¢.

(1) Let S={a,b),b,} and T={b,, b} be given by a*=a, b;b;=b;, ab;=b; and
bia=b, (1=<i,j=2). Let 8:5— T be given by b;0=>b, (i=1,2) and af=b,. Then §
is again in class Il ; and Q={a} and J={b,b,} are f-singular J-classes.
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*
a
[’
* * — |=x* *
by | b by | b

(2) Let S={a,0} be given by a®=0, T={1} and @ be the morphism from S onto
7. 8 is in class I, ¢z and both Q= {a} and J= {0} are f-singular.

Let now S={a,b;,b,} and T={b,, by} be given by b;b;=b,, a*=b;a=b, and
ab;=b; (1<i,j<2). Let §:S— T be given by b;0=>b; (1=<i<2) and ad =b,. Then 0
is again in class 111y and Q={a} and J={b,, b,} are the #-singular g-classes.

a

* * a— *

by | b, by | by

(3) Let S={0,a4,b,c} and T={0,a,b} be given by a*=a, ab=ba=ac=ca=c,
bc=cb=b2=c2=0, and let 8:S— T be defined by af=a, b8=c0=>b, 00=0. §is in
class Iy, y and both Q= {b} and J={c} are 6-singular.

* *
a a
b

o b
c

* [%
0 0
Let finally S={a, by, b,,c,d,0} and T={by,b,,c,d,0} be given by d*=c*=d,
cd=dc=c¢ (SO {C,d}:ZZ), b;bj=ab,-=b,-a=0, bizdbizbiy biC=Cbi=b1_i
(0<i,j<1), ad=da=b, and ca=ac=by. Let also #:S— T be given by the identity

on T and af=b,. @ is again in class Illy, y and Q={a} is the only #-singular
F-class.

d,c a dc

bo b1 . bo b]
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3.5. Class IV

Recall that for an m.p.s. 8:S— T in class IV, there exists a unique g-class J' of
T such that J’6~! is the union of two g-classes J and Q, that are not g-comparable.
After Propositions 2.1, 2.5 and 3.1, # induces a bijection, respectively from J and
Q onto J’, 8 is injective on s#-classes, and both J and Q are §-singular. Also, J’,
J and Q are null 4-classes. Also J 0 7% and Q° are isomorphic and J’, J and Q
have isomorphic sets of #- and Z-classes and isomorphic Schiitzenberger groups.

Example 4. If k=1, let S, ={0,ay,...,a,} with q;a;=0. Then 6: 8§, ,— S, given by
00=0, a;0=qa; (1<i<k) and a,,,6=a; is an m.p.s. of class IV.

a ay 41 0 a ay

3.6. V-morphisms and m.p.s.’s

Using the characterizations of aperiodic and LG-morphisms given in Proposition
1.1 and the description of m.p.s.’s in the above sections, it is easy to check the fol-
lowing:

Proposition 3.7. Let 8 be an m.p.s. 8 is an aperiodic morphism iff 8 is not in class
1. 0 is an LG-morphism iff 8 is not in class lllg. 5. O

Note that these properties of morphisms are rigid, that is, if 8,:S—V and
0,: V- T are onto morphisms, §=80,6, is aperiodic (resp. an LG-morphism, an
LI-morphism, a regular morphism) iff so are #, and 6, (Propositions 1.1 and 1.2).
Thus we have

Proposition 3.8. Let 6 be any onto morphism, and let 6=0, --- 6, be a factoriza-
tion of 6 in m.p.s.’s. Then 0 is aperiodic (resp. an LG-morphism, an LI-morphism)
iff none of the 6;’s is in class 1 (resp. 1llg. p, 1g) nor lllg, g, O
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